Package index
-
step_measure_input_wide() - Ingest Measurements in Separate Columns
-
step_measure_input_long() - Ingest Measurements from a Single Column
-
step_measure_savitzky_golay() - Savitzky-Golay Pre-Processing
-
step_measure_snv() - Standard Normal Variate (SNV) Transformation
-
step_measure_msc() - Multiplicative Scatter Correction (MSC)
-
step_measure_map() - Apply a Custom Function to Measurements
-
step_measure_channel_align() - Align Multiple Channels to a Common Grid
-
step_measure_channel_combine() - Combine Multiple Channels
-
step_measure_channel_ratio() - Compute Ratios Between Channels
-
step_measure_absorbance() - Convert Transmittance to Absorbance
-
step_measure_transmittance() - Convert Absorbance to Transmittance
-
step_measure_log() - Log Transformation
-
step_measure_kubelka_munk() - Kubelka-Munk Transformation
-
step_measure_derivative() - Simple Finite Difference Derivatives
-
step_measure_derivative_gap() - Gap (Norris-Williams) Derivatives
-
step_measure_trim() - Trim Measurements to Specified Range
-
step_measure_exclude() - Exclude Measurement Ranges
-
step_measure_resample() - Resample Measurements to New Grid
-
step_measure_interpolate() - Interpolate Gaps in Measurement Data
-
step_measure_normalize_auc() - Normalize by Area Under Curve
-
step_measure_normalize_istd() - Internal Standard Normalization
-
step_measure_normalize_max() - Normalize by Maximum Value
-
step_measure_normalize_peak() - Normalize to a Specific Peak Region
-
step_measure_normalize_range() - Normalize to Range 0-1
-
step_measure_normalize_sum() - Normalize by Sum (Total Intensity)
-
step_measure_normalize_vector() - Normalize by L2 (Euclidean) Norm
-
step_measure_center() - Mean Centering
-
step_measure_scale_auto() - Auto-Scaling (Z-Score Normalization)
-
step_measure_scale_pareto() - Pareto Scaling
-
step_measure_scale_range() - Range Scaling
-
step_measure_scale_vast() - VAST Scaling (Variable Stability Scaling)
-
step_measure_subtract_blank() - Subtract Blank Measurement
-
step_measure_subtract_reference() - Subtract or Divide by Reference Spectrum
-
step_measure_ratio_reference() - Compute Ratio to Reference Spectrum
-
step_measure_calibrate_x() - Apply X-Axis Calibration
-
step_measure_calibrate_y() - Apply Y-Axis Calibration (Response Factor)
-
step_measure_output_wide() - Reorganize Measurements to Separate Columns
-
step_measure_output_long() - Reorganize Measurements to Long Format
-
step_measure_peaks_detect() - Detect Peaks in Measurements
-
step_measure_peaks_integrate() - Integrate Peak Areas
-
step_measure_peaks_filter() - Filter Peaks by Criteria
-
step_measure_peaks_deconvolve() - Deconvolve Overlapping Peaks
-
step_measure_peaks_to_table() - Convert Peaks to Tidy Table
-
is_peaks_list() - Test if object is a peaks list
-
find_peaks_cols() - Find peaks columns in a data frame
-
step_measure_smooth_ma() - Moving Average Smoothing
-
step_measure_smooth_median() - Median Filter Smoothing
-
step_measure_smooth_gaussian() - Gaussian Kernel Smoothing
-
step_measure_smooth_wavelet() - Wavelet Denoising
-
step_measure_filter_fourier() - Fourier Low-Pass Filtering
-
step_measure_despike() - Remove Spikes and Outliers from Measurements
-
step_measure_align_shift() - Shift Alignment via Cross-Correlation
-
step_measure_align_reference() - Align to Reference Spectrum
-
step_measure_align_dtw() - Dynamic Time Warping Alignment
-
step_measure_align_ptw() - Parametric Time Warping Alignment
-
step_measure_align_cow() - Correlation Optimized Warping Alignment
-
step_measure_qc_snr() - Calculate Signal-to-Noise Ratio
-
step_measure_qc_saturated() - Detect Saturated Measurements
-
step_measure_qc_outlier() - Detect Outlier Samples
-
step_measure_impute() - Impute Missing Values in Measurements
-
window_side()differentiation_order() - Parameter for measure steps
-
baseline_lambda()baseline_asymmetry()baseline_degree()baseline_half_window()baseline_span() - Parameters for baseline correction steps
-
peak_location_min()peak_location_max() - Parameters for peak normalization
-
derivative_order()derivative_gap()derivative_segment() - Parameters for derivative steps
-
smooth_window()smooth_sigma()fourier_cutoff()despike_threshold() - Parameters for smoothing steps
-
align_max_shift()align_segment_length() - Parameters for alignment steps
-
outlier_threshold() - Parameters for quality control steps
-
bin_width()emsc_degree()osc_n_components() - Parameters for feature engineering and scatter correction
-
meats_long - Fat, water and protein content of meat samples
-
glucose_bioreactorsbioreactors_largebioreactors_small - Raman Spectra Bioreactor Data
-
hplc_chromatograms - Simulated HPLC Chromatography Data
-
sec_chromatograms - Simulated SEC/GPC Chromatography Data
-
sec_calibration - SEC/GPC Calibration Standards Summary
-
maldi_spectra - Simulated MALDI-TOF Mass Spectrometry Data
-
step_measure_baseline_airpls() - Adaptive Iteratively Reweighted Penalized Least Squares Baseline
-
step_measure_baseline_als() - Asymmetric Least Squares (ALS) Baseline Correction
-
step_measure_baseline_arpls() - Asymmetrically Reweighted Penalized Least Squares Baseline Correction
-
step_measure_baseline_auto() - Automatic Baseline Correction Method Selection
-
step_measure_baseline_custom() - Custom Baseline Correction with User-Provided Function
-
step_measure_baseline_gpc()superseded - GPC/SEC Baseline Correction
-
step_measure_baseline_minima() - Local Minima Interpolation Baseline Correction
-
step_measure_baseline_morph() - Iterative Morphological Baseline Correction
-
step_measure_baseline_poly() - Polynomial Baseline Correction
-
step_measure_baseline_py() - Python-Based Baseline Correction via pybaselines
-
step_measure_baseline_rf() - Robust Fitting Baseline Correction
-
step_measure_baseline_rolling() - Rolling Ball Baseline Correction
-
step_measure_baseline_snip() - SNIP Baseline Correction
-
step_measure_baseline_tophat() - Top-Hat Morphological Baseline Correction
-
step_measure_detrend() - Remove Trend from Measurements
-
subtract_rf_baseline() - Subtract baseline using robust fitting method
-
step_measure_mw_averages()superseded - Calculate Molecular Weight Averages for SEC/GPC
-
step_measure_mw_distribution()superseded - Generate Molecular Weight Distribution Curve
-
step_measure_mw_fractions()superseded - Calculate Molecular Weight Fractions for SEC/GPC
-
step_measure_integrals() - Calculate Region Integrals
-
step_measure_ratios() - Calculate Region Ratios
-
step_measure_moments() - Calculate Statistical Moments
-
step_measure_bin() - Spectral Binning
-
step_measure_emsc() - Extended Multiplicative Scatter Correction (EMSC)
-
step_measure_osc() - Orthogonal Signal Correction (OSC)
-
step_measure_augment_noise() - Add Random Noise to Measurements
-
step_measure_augment_shift() - Add Random X-axis Shifts
-
step_measure_augment_scale() - Random Intensity Scaling
-
step_measure_drift_qc_loess() - QC-Based Drift Correction Using LOESS
-
step_measure_drift_linear() - Linear Drift Correction
-
step_measure_drift_spline() - Spline-Based Drift Correction
-
step_measure_qc_bracket() - QC Bracketing Interpolation
-
step_measure_batch_reference() - Reference-Based Batch Correction
-
measure_detect_drift() - Detect Drift in Analytical Data
-
measure_calibrationmeasure_calibration-class - Calibration Curve Object
-
measure_calibration_fit() - Fit a Calibration Curve
-
measure_calibration_predict() - Predict Concentrations from Calibration Curve
-
measure_calibration_verify() - Verify Calibration Curve Performance
-
is_measure_calibration() - Test if Object is a Calibration Curve
-
tidy(<measure_calibration>)tidy(<measure_calibration_verify>) - Tidy a Calibration Curve
-
glance(<measure_calibration>) - Glance at Calibration Curve Summary
-
augment(<measure_calibration>) - Augment Calibration Data
-
measure_lod() - Calculate Limit of Detection (LOD)
-
measure_loq() - Calculate Limit of Quantitation (LOQ)
-
measure_lod_loq() - Calculate LOD and LOQ Together
-
tidy(<measure_lod>) - Tidy LOD/LOQ Results
-
measure_repeatability() - Repeatability (Within-Run Precision)
-
measure_intermediate_precision() - Intermediate Precision (Between-Run Precision)
-
measure_reproducibility() - Reproducibility (Between-Lab Precision)
-
measure_gage_rr() - Gage R&R (Measurement System Analysis)
-
measure_accuracy() - Accuracy Assessment
-
measure_linearity() - Linearity Assessment
-
measure_carryover() - Carryover Assessment
-
measure_uncertainty_budget() - Create an Uncertainty Budget
-
measure_uncertainty() - Quick Uncertainty Calculation
-
uncertainty_component() - Create an Uncertainty Component
-
uncertainty_type_a() - Create Type A Uncertainty from Repeated Measurements
-
uncertainty_type_b_rectangular() - Create Type B Uncertainty from Rectangular Distribution
-
uncertainty_type_b_expanded() - Create Type B Uncertainty from Expanded Uncertainty
-
tidy(<measure_uncertainty_budget>) - Tidy an Uncertainty Budget
-
measure_control_limits() - Calculate Control Limits
-
measure_control_chart() - Generate Control Chart
-
measure_system_suitability() - System Suitability Check
-
measure_bland_altman() - Bland-Altman Method Comparison
-
measure_deming_regression() - Deming Regression for Method Comparison
-
measure_passing_bablok() - Passing-Bablok Regression for Method Comparison
-
measure_proficiency_score() - Proficiency Testing Scores
-
measure_matrix_effect() - Matrix Effect Analysis
-
step_measure_standard_addition() - Standard Addition Correction
-
step_measure_dilution_correct() - Dilution Factor Correction
-
step_measure_surrogate_recovery() - Surrogate/Internal Standard Recovery
-
criterion() - Create an Acceptance Criterion
-
measure_criteria() - Create a Set of Acceptance Criteria
-
measure_assess() - Assess Data Against Acceptance Criteria
-
all_pass() - Check if All Criteria Pass
-
get_failures() - Extract Failed Criteria
-
criteria_bioanalytical()criteria_ich_q2()criteria_bland_altman()criteria_method_comparison()criteria_proficiency_testing()criteria_matrix_effects()criteria_surrogate_recovery() - Preset Acceptance Criteria
-
measure_validate_metadata() - Validate Analytical Metadata
-
measure_standardize_sample_type() - Standardize Sample Type Values
-
measure_sample_types - Canonical Sample Types
-
step_measure_parafac() - PARAFAC Decomposition for Multi-Dimensional Data
-
step_measure_tucker() - Tucker Decomposition for Multi-Dimensional Data
-
step_measure_mcr_als() - MCR-ALS Decomposition for Multi-Dimensional Data
-
new_measure_nd_tbl() - Create a new n-dimensional measure tibble
-
new_measure_nd_list() - Create a new n-dimensional measure list
-
is_measure_nd_tbl() - Test if object is an n-dimensional measure tibble
-
is_measure_nd_list() - Test if object is an n-dimensional measure list
-
measure_ndim() - Get the number of dimensions of a measurement
-
measure_dim_names() - Get dimension names of an n-dimensional measurement
-
measure_dim_units() - Get dimension units of an n-dimensional measurement
-
measure_is_regular() - Check if an n-dimensional measurement has a regular grid
-
measure_grid_info() - Get grid information for an n-dimensional measurement
-
measure_apply() - Apply a function to measurement data along dimensions
-
measure_unfold() - Unfold n-dimensional measurement to 1D
-
measure_fold() - Fold 1D measurement back to n-dimensional
-
measure_slice() - Extract slices from n-dimensional measurement
-
measure_project() - Project n-dimensional measurement by aggregating across dimensions
-
find_measure_nd_cols() - Find n-dimensional measure columns in a data frame
-
get_measure_col_ndim() - Get the dimensionality of a measure column
-
new_measure_tbl() - Create a new measure tibble
-
new_measure_list() - Create a new measure list
-
is_measure_tbl() - Test if object is a measure tibble
-
is_measure_list() - Test if object is a measure list
-
find_measure_cols() - Find measure columns in a data frame
-
has_measure_col() - Check if data frame has measure column(s)
-
required_pkgs(<step_measure_align_dtw>)required_pkgs(<step_measure_align_ptw>)required_pkgs(<step_measure_augment_noise>)required_pkgs(<step_measure_augment_shift>)required_pkgs(<step_measure_augment_scale>)required_pkgs(<step_measure_integrals>)required_pkgs(<step_measure_ratios>)required_pkgs(<step_measure_moments>)required_pkgs(<step_measure_bin>)required_pkgs(<step_measure_mw_averages>)required_pkgs(<step_measure_mw_fractions>)required_pkgs(<step_measure_mw_distribution>)required_pkgs(<step_measure_resample>)required_pkgs(<step_measure_savitzky_golay>)required_pkgs(<step_measure_emsc>)required_pkgs(<step_measure_osc>)required_pkgs(<step_measure_smooth_wavelet>) - Set package dependencies
-
measure_packs() - List Registered Technique Packs
-
measure_steps() - List Available Steps
-
register_measure_pack() - Register a Technique Pack
-
register_measure_step() - Register a Step from a Technique Pack
-
measure_map() - Apply a Function to Each Sample's Measurements
-
measure_map_safely() - Apply a Function Safely to Each Sample's Measurements
-
measure_summarize() - Summarize Measurements Across Samples
-
measure_identify_columns() - Identify Column Types in Analytical Data
-
measure_column_summary() - Get Column Summary by Type
-
measure_column_patterns - Common column naming patterns for analytical data
-
set_measure_roles() - Set Measure Roles in a Recipe
-
check_measure_recipe() - Check Measure Recipe Structure
-
validate_measure() - Validate measure data
-
measure_axis_info() - Get axis information from measure data
-
infer_axis_type() - Infer axis type from location values
-
check_axis_consistency() - Check axis consistency across samples
-
measure_quality_summary() - Summarize measure data quality
-
measure_validation_report() - Create an Analytical Method Validation Report
-
render_validation_report() - Render a Validation Report to Document Format
-
has_validation_section() - Check if validation report has a section
-
get_validation_section() - Get validation section data
-
add_validation_section() - Add or update a validation section
-
print(<measure_validation_report>) - Print a Validation Report
-
summary(<measure_validation_report>) - Summarize a Validation Report
-
tidy(<measure_validation_report>) - Tidy a Validation Report
-
autoplot(<measure_tbl>)autoplot(<measure_list>)autoplot(<recipe>) - Autoplot Methods for Measure Objects
-
autoplot(<measure_bland_altman>) - Plot Bland-Altman Analysis
-
autoplot(<measure_calibration>) - Plot Calibration Curve Diagnostics
-
autoplot(<measure_control_chart>) - Plot Control Chart
-
autoplot(<measure_deming_regression>)autoplot(<measure_passing_bablok>) - Plot Method Comparison Regression
-
autoplot(<measure_linearity>) - Plot Linearity Assessment Results
-
autoplot(<measure_matrix_effect>) - Plot Matrix Effects
-
autoplot(<measure_proficiency_score>) - Plot Proficiency Test Scores
-
autoplot(<measure_uncertainty_budget>) - Plot Uncertainty Budget
-
fortify(<measure_tbl>)fortify(<measure_list>) - Convert Measure Objects to Data Frames for Plotting
-
fortify(<measure_calibration>) - Extract Calibration Curve Data
-
plot_measure_comparison() - Compare Multiple Preprocessing Recipes
-
measure_plot_summary() - Plot Summary Statistics for Measure Data