step_measure_smooth_gaussian() creates a specification of a recipe step
that applies Gaussian kernel smoothing. This produces smooth results while
preserving the general shape of peaks.
Arguments
- recipe
A recipe object.
- measures
An optional character vector of measure column names.
- sigma
The standard deviation of the Gaussian kernel. Default is 1. Larger values produce more smoothing. Tunable via
smooth_sigma().- window
The window size. If
NULL(default), automatically set toceiling(6 * sigma) | 1(6 sigma rule, ensuring odd).- edge_method
How to handle edges. One of
"reflect"(default),"constant", or"NA".- role
Not used.
- trained
Logical indicating if the step has been trained.
- skip
Logical. Should the step be skipped when baking?
- id
Unique step identifier.
Details
Gaussian smoothing convolves the spectrum with a Gaussian kernel: $$G(x) = \exp(-x^2 / 2\sigma^2)$$
The kernel is normalized to sum to 1. This provides smooth, natural-looking results that preserve peak shapes better than moving average.
Examples
library(recipes)
rec <- recipe(water + fat + protein ~ ., data = meats_long) |>
update_role(id, new_role = "id") |>
step_measure_input_long(transmittance, location = vars(channel)) |>
step_measure_smooth_gaussian(sigma = 2) |>
prep()
bake(rec, new_data = NULL)
#> # A tibble: 215 × 5
#> id water fat protein .measures
#> <int> <dbl> <dbl> <dbl> <meas>
#> 1 1 60.5 22.5 16.7 [100 × 2]
#> 2 2 46 40.1 13.5 [100 × 2]
#> 3 3 71 8.4 20.5 [100 × 2]
#> 4 4 72.8 5.9 20.7 [100 × 2]
#> 5 5 58.3 25.5 15.5 [100 × 2]
#> 6 6 44 42.7 13.7 [100 × 2]
#> 7 7 44 42.7 13.7 [100 × 2]
#> 8 8 69.3 10.6 19.3 [100 × 2]
#> 9 9 61.4 19.9 17.7 [100 × 2]
#> 10 10 61.4 19.9 17.7 [100 × 2]
#> # ℹ 205 more rows