Smart Parameter Initialization for Peak Deconvolution
Source:R/peak-deconv-initialize.R
initialize_peak_params.RdInitializes peak model parameters using actual peak properties from the data rather than naive guesses, improving optimization convergence.
Usage
initialize_peak_params(
x,
y,
n_peaks,
models,
peak_indices = NULL,
smooth = TRUE,
smooth_span = 0.05
)Arguments
- x
Numeric vector of x-axis values.
- y
Numeric vector of y-axis values.
- n_peaks
Number of peaks to initialize.
- models
List of
peak_modelobjects (one per peak).- peak_indices
Optional integer vector of peak indices (if already known).
- smooth
Logical. If
TRUE, smooth data before peak detection.- smooth_span
Smoothing span for LOESS (if
smooth = TRUE).
See also
Other peak-deconvolution:
add_param_jitter(),
assess_deconv_quality(),
check_quality_gates(),
optimize_deconvolution()
Examples
# Create synthetic data with two peaks
x <- seq(0, 20, by = 0.1)
y <- 1.5 * exp(-0.5 * ((x - 8) / 1)^2) +
0.8 * exp(-0.5 * ((x - 12) / 1.5)^2)
models <- list(gaussian_peak_model(), gaussian_peak_model())
init_params <- initialize_peak_params(x, y, n_peaks = 2, models = models)