Skip to contents

A standalone function for robust fitting baseline subtraction using local regression with iterative reweighting. For use within a recipe workflow, see step_measure_baseline_rf().

Usage

subtract_rf_baseline(data, yvar, span = 2/3, maxit = c(5, 5))

Arguments

data

A dataframe containing the variable for baseline subtraction

yvar

The name of the column for baseline subtraction

span

Controls the amount of smoothing based on the fraction of data to use in computing each fitted value, defaults to 2/3.

maxit

The number of iterations to use the robust fit, defaults to c(5, 5) where the first value specifies iterations for asymmetric weighting function and the second value for symmetric weighting function.

Value

A dataframe matching column in data plus raw and baseline columns

See also

step_measure_baseline_rf() for the recipe step version.

Examples

library(dplyr)
meats_long |>
  group_by(id) |>
  subtract_rf_baseline(yvar = transmittance)
#> # A tibble: 21,500 × 8
#> # Groups:   id [215]
#>       id water   fat protein channel transmittance   raw baseline
#>    <int> <dbl> <dbl>   <dbl>   <int>         <dbl> <dbl>    <dbl>
#>  1     1  60.5  22.5    16.7       1       0.0668   2.62     2.55
#>  2     1  60.5  22.5    16.7       2       0.0598   2.62     2.56
#>  3     1  60.5  22.5    16.7       3       0.0527   2.62     2.57
#>  4     1  60.5  22.5    16.7       4       0.0458   2.62     2.57
#>  5     1  60.5  22.5    16.7       5       0.0389   2.62     2.58
#>  6     1  60.5  22.5    16.7       6       0.0321   2.62     2.59
#>  7     1  60.5  22.5    16.7       7       0.0256   2.62     2.60
#>  8     1  60.5  22.5    16.7       8       0.0193   2.62     2.60
#>  9     1  60.5  22.5    16.7       9       0.0133   2.63     2.61
#> 10     1  60.5  22.5    16.7      10       0.00753  2.63     2.62
#> # ℹ 21,490 more rows