Convenience function to calculate both LOD and LOQ using the same method.
Usage
measure_lod_loq(
data,
response_col,
method = c("blank_sd", "calibration", "sn", "precision"),
conc_col = "nominal_conc",
sample_type_col = "sample_type",
calibration = NULL,
k_lod = NULL,
k_loq = 10,
...
)Arguments
- data
A data frame containing the measurement data.
- response_col
Name of the response column.
- method
Method for LOD calculation:
"blank_sd": 3 * SD of blank samples (requiressample_type == "blank")"calibration": 3.3 * sigma / slope from calibration curve"sn": Signal-to-noise ratio method (requiressn_color noise estimate)"precision": Based on acceptable precision at low concentrations
- conc_col
Name of concentration column (for calibration method).
- sample_type_col
Name of sample type column. Default is
"sample_type".- calibration
Optional measure_calibration object for calibration method.
- k_lod
Multiplier for LOD (default 3 or 3.3 for calibration).
- k_loq
Multiplier for LOQ (default 10).
- ...
Additional arguments passed to method-specific calculations.
Examples
data <- data.frame(
sample_type = c(rep("blank", 10), rep("standard", 5)),
response = c(rnorm(10, mean = 0.5, sd = 0.1),
c(5, 15, 35, 70, 150)),
nominal_conc = c(rep(0, 10), c(10, 25, 50, 100, 200))
)
limits <- measure_lod_loq(data, "response", method = "blank_sd")
limits$lod
#> <measure_lod>
#> Value: 0.752
#> Method: blank_sd
#> k: 3
#> Uncertainty: 0.06627
#> Parameters:
#> blank_mean: 0.5424
#> blank_sd: 0.06986
#> n_blanks: 10
limits$loq
#> <measure_loq>
#> Value: 1.241
#> Method: blank_sd
#> k: 10
#> Uncertainty: 0.2209
#> Parameters:
#> blank_mean: 0.5424
#> blank_sd: 0.06986
#> n_blanks: 10