Performs system suitability tests on QC or reference samples to verify instrument performance meets requirements.
Value
A measure_sst object containing:
results: Pass/fail status for each metricsummary: Overall pass/fail and summary statisticsdetails: Individual sample results
Details
System suitability testing (SST) verifies that the analytical system is performing adequately before, during, or after a run. Common metrics include:
Peak resolution
Retention time reproducibility
Peak symmetry/tailing factor
Signal-to-noise ratio
Plate count
See also
Other control-charts:
measure_control_chart(),
measure_control_limits()
Examples
# System suitability check
sst_data <- data.frame(
sample_id = paste0("SST_", 1:5),
resolution = c(2.1, 2.3, 2.2, 2.0, 2.1),
tailing = c(1.1, 1.0, 1.2, 1.1, 1.0),
plates = c(5200, 5100, 5300, 5000, 5150)
)
result <- measure_system_suitability(
sst_data,
metrics = list(
resolution = list(col = "resolution", min = 2.0),
tailing = list(col = "tailing", max = 1.5),
plates = list(col = "plates", min = 5000)
)
)
print(result)
#> measure_system_suitability
#> ────────────────────────────────────────────────────────────────────────────────
#>
#> Samples evaluated: 5
#> Metrics checked: 3
#> Passed: 3 / 3
#>
#> Overall Status: PASS
#>
#> Results:
#> # A tibble: 3 × 11
#> metric column n mean sd cv min_spec max_spec observed_min
#> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 resolution resoluti… 5 2.14e0 1.14e-1 5.33 2 NA 2
#> 2 tailing tailing 5 1.08e0 8.37e-2 7.75 NA 1.5 1
#> 3 plates plates 5 5.15e3 1.12e+2 2.17 5000 NA 5000
#> # ℹ 2 more variables: observed_max <dbl>, pass <lgl>