step_measure_baseline_rolling() creates a specification of a recipe step
that applies rolling ball baseline correction. This morphological approach
"rolls" a ball of specified radius along the underside of the spectrum.
Usage
step_measure_baseline_rolling(
recipe,
measures = NULL,
window_size = 100,
smoothing = 50,
role = NA,
trained = FALSE,
skip = FALSE,
id = recipes::rand_id("measure_baseline_rolling")
)Arguments
- recipe
A recipe object.
- measures
An optional character vector of measure column names.
- window_size
The diameter of the rolling ball in number of points. Default is 100.
- smoothing
Additional smoothing window applied to the baseline. Default is 50.
- role
Not used.
- trained
Logical indicating if the step has been trained.
- skip
Logical. Should the step be skipped when baking?
- id
Unique step identifier.
Details
The rolling ball algorithm simulates rolling a ball of specified radius along the underside of the spectrum. Points where the ball touches become the baseline. This is effective for:
Chromatographic baselines
Spectra with gradual drift
Data where peaks are narrower than baseline features
See also
Other measure-baseline:
step_measure_baseline_airpls(),
step_measure_baseline_als(),
step_measure_baseline_arpls(),
step_measure_baseline_auto(),
step_measure_baseline_custom(),
step_measure_baseline_gpc(),
step_measure_baseline_minima(),
step_measure_baseline_morph(),
step_measure_baseline_poly(),
step_measure_baseline_py(),
step_measure_baseline_rf(),
step_measure_baseline_snip(),
step_measure_baseline_tophat(),
step_measure_detrend()
Examples
library(recipes)
rec <- recipe(water + fat + protein ~ ., data = meats_long) |>
update_role(id, new_role = "id") |>
step_measure_input_long(transmittance, location = vars(channel)) |>
step_measure_baseline_rolling(window_size = 50) |>
prep()
bake(rec, new_data = NULL)
#> # A tibble: 215 × 5
#> id water fat protein .measures
#> <int> <dbl> <dbl> <dbl> <meas>
#> 1 1 60.5 22.5 16.7 [100 × 2]
#> 2 2 46 40.1 13.5 [100 × 2]
#> 3 3 71 8.4 20.5 [100 × 2]
#> 4 4 72.8 5.9 20.7 [100 × 2]
#> 5 5 58.3 25.5 15.5 [100 × 2]
#> 6 6 44 42.7 13.7 [100 × 2]
#> 7 7 44 42.7 13.7 [100 × 2]
#> 8 8 69.3 10.6 19.3 [100 × 2]
#> 9 9 61.4 19.9 17.7 [100 × 2]
#> 10 10 61.4 19.9 17.7 [100 × 2]
#> # ℹ 205 more rows