Skip to contents

Creates a parsnip model specification for LLM-based prediction using dsprrr.

Usage

llm_predict(
  mode = "classification",
  signature = NULL,
  temperature = NULL,
  top_p = NULL,
  model = NULL,
  provider = NULL
)

Arguments

mode

Model mode, typically "classification" or "regression" (for text tasks, classification is most common).

signature

A dsprrr signature string or Signature object.

temperature

Temperature parameter for LLM (tune-able).

top_p

Top-p parameter for LLM (tune-able).

model

LLM model name (e.g., "gpt-4o-mini").

provider

LLM provider (e.g., "openai", "anthropic").

Value

A parsnip model specification object.

Examples

if (FALSE) { # \dontrun{
library(parsnip)
library(tune)

# Create LLM model spec
llm_spec <- llm_predict(
  mode = "classification",
  signature = "text -> sentiment: enum('positive', 'negative', 'neutral')"
) |>
  set_engine("dsprrr", model = "gpt-4o-mini")

# With tunable parameters
llm_spec_tuned <- llm_predict(
  mode = "classification",
  signature = "text -> sentiment",
  temperature = tune()
) |>
  set_engine("dsprrr")
} # }