Genetic/evolutionary prompt optimizer that evolves instruction variants using reflection on failed examples.
Usage
GEPA(
metric = NULL,
metric_threshold = NULL,
max_errors = 5L,
metrics = NULL,
population_size = 20L,
generations = 10L,
mutation_rate = 0.1,
crossover_rate = 0.7,
selection = "pareto",
seed = NULL,
log_dir = NULL,
verbose = TRUE,
track_stats = TRUE
)Arguments
- metric
A single metric function (fallback when
metricsis NULL).- metric_threshold
Minimum score for an example to be considered successful.
- max_errors
Maximum number of errors allowed during optimization.
- metrics
Named list of metric functions for evaluation.
- population_size
Size of the population. Default is 20.
- generations
Number of generations to run. Default is 10.
- mutation_rate
Probability of mutation. Default is 0.1.
- crossover_rate
Probability of crossover. Default is 0.7.
- selection
Selection strategy: "pareto" or "current_best".
- seed
Random seed for reproducibility.
- log_dir
Optional directory for trial logging.
- verbose
Whether to print progress messages.
- track_stats
Whether to record generation statistics.
